Procentowe odchylenie niedokładności układów harmonicznych na dwóch interwałach

0
496

Procentowe odchylenie niedokładności układów harmonicznych na dwóch interwałachZastanawiałeś się z pewnością jak to jest, że patrząc na jeden wykres konkretnej pary walutowej widzisz kilka różnych układów, a tym samym nie masz pewności co do wykonanej analizy ani (co gorsza) do kierunku przyszłego wejścia w pozycję.

Podczas najbliższego video-czatu z cyklu Matematyka na FX:
1. Po raz pierwszy przedstawimy oraz szczegółowo omówimy Miner’owską koncepcję DTFM,
2. Od strony matematycznej wyznaczymy na podstawie konkretnych działań różnicę jaką jesteśmy w stanie zaakceptować- szacując w ten sposób „odchylenie Fibonacciego”,
3. Zobacz jak wygląda prosta strategia określania „swobodnego obszaru” rynkowego określonego za pomocą podwójnych przedziałów czasowych.

Dodatkowo na przykładzie konkretnych transakcji odpowiemy na najczęstsze pytania dotyczące:
• Precyzji zajęcia pozycji: „co zrobić ze stopem jeśli pozycja mi ucieka”?
• Interwału czasowego: „czy istnieje uniwersalny TimeFrame i czy to ma znaczenie dla wielkości pozycji oraz wielkości mojego Stop Lossa”?
• Procentowego opóźnienia sygnału względem pierwotnej koncepcji: kiedy nie jest za „późno” aby zająć pozycję?

Procentowe odchylenie niedokładności układów harmonicznych na dwóch interwałach

DOŁĄCZ DO NAS!

Poprzedni artykułRynki o poranku
Następny artykułDane makro na 11.11.2015
Łukasz Fijołek
Główny pomysłodawca i założyciel serwisu Fibonacci Team School. Łukasz to zawodowy Trader, z ponad 10-letnim doświadczeniem na rynku Forex. Specjalizuje się w Analizie Technicznej, szczególnie w zakresie spekulacji jednosesyjnej przy wykorzystaniu geometrii rynkowych, liczb Fibonacciego, struktur korekcyjnych oraz formacji harmonicznych. Wielokrotnie brał udział w konferencjach i spotkaniach branżowych dotyczących rynku FOREX jako niezależny Trader i ekspert w temacie szeroko pojętej Analizy Technicznej. Jako jedyny w Polsce od wielu lat organizuje LIVE TRADING udowadniając wysoką skuteczność technik Fibonacciego.